Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Cells ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534387

RESUMO

White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Geleia de Wharton , Substância Branca , Humanos , Ratos , Animais , Administração Intranasal
2.
EBioMedicine ; 102: 105060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490102

RESUMO

BACKGROUND: In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS: This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS: Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION: In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING: This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Geleia de Wharton , Humanos , Qualidade de Vida , Coração , Cordão Umbilical
3.
Ophthalmic Res ; 67(1): 232-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447539

RESUMO

INTRODUCTION: Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells. Recent research suggests immunological changes such as cytokine imbalance may affect its pathophysiology. This implies that immunomodulation, like that of mesenchymal cells, could be a potential therapeutic avenue for this disease. However, the effects of intravitreal injections of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) on intraocular immune response have not been assessed in ocular hypertension (OH) models. METHODS: We explored this by measuring cytokine levels and expression of other markers, such as glial fibrillary acidic protein (GFAP) and T cells, in 15 randomly divided New Zealand rabbits: G1: OH, G2: hWJ-MSCs, and G3: OH+hWJ-MSCs. We analyzed the aqueous humor (IL-6, IL-8, and TNF-α) and vitreous humor (IFN-γ, IL-10, and TGF-ß) using ELISA and flow cytometry (cell populations), as well as TCD3+, TCD3+/TCD4+, and TCD3+/TCD8+ lymphocytes, and GFAP in the retina and optic nerve through immunohistochemistry. RESULTS: We found a decrease in TNF-α, IL-6, IFN-γ, IL-10, and IL-8 in G3 compared to G1 and an increase in TGF-ß in both G2 and G3. TCD3+ retinal infiltration in all groups was primarily TCD8+ rather than TCD4+ cells, and strong GFAP expression was observed in both the retina and optic nerves in all groups. CONCLUSION: Our results suggest that cellular and humoral immune responses may play a role in glaucomatous optic neuropathy and that intravitreal hWJ-MSCs can induce an immunosuppressive environment by inhibiting proinflammatory cytokines and enhancing regulatory cytokines.


Assuntos
Citocinas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células-Tronco Mesenquimais , Hipertensão Ocular , Geleia de Wharton , Animais , Coelhos , Geleia de Wharton/citologia , Humanos , Hipertensão Ocular/metabolismo , Citocinas/metabolismo , Humor Aquoso/metabolismo , Pressão Intraocular/fisiologia , Citometria de Fluxo , Transplante de Células-Tronco Mesenquimais/métodos , Injeções Intravítreas , Imuno-Histoquímica , Células Ganglionares da Retina/patologia , Glucocorticoides , Nervo Óptico/patologia
4.
Mol Biol Rep ; 51(1): 383, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433142

RESUMO

BACKGROUND: Graphene oxide (GO) is widespread in scaffold engineering owing to its extraordinary properties such as multiple oxygen functional groups, high hydrophilicity ability and biocompatibility. It is known to promote differentiation in mesenchymal stem cells, but concomitant comparison of its modulation on the expression profiles of Wharton's jelly (WJ)-MSC surface markers, lineage differentiation, and epigenetic regulatory genes in basal and induced condition are still lacking. Unraveling the fundamental mechanisms is essential for the effective utilization of WJ-MSCs incorporated with GO in therapy. This study aims to explore the unique gene expression profiles and epigenetic characteristics of WJ-MSCs influenced by GO. METHODS AND RESULTS: The characterized GO-coated coverslip served as a substrate for culturing WJ-MSCs. In addition to investigating the impact of GO on cell proliferation and differentiation, we conducted a gene expression study using PCR array, while epigenetic control was assessed through bisulfite sequencing and Western blot analysis. Our findings indicate that the presence of GO maintained the proliferation and survival of WJ-MSCs. In the absence of induction, GO led to minor lipid and glycosaminoglycan deposition in WJ-MSCs. This was evidenced by the sustained expression of pluripotency and lineage-specific genes, demethylation at the OCT4 promoter, and a decrease in H3K9 methylation. In osteo-induced condition, the occurrence of osteogenesis appeared to be guided by BMP/TGF and ERK pathway activation, accompanied by the upregulation of osteogenic-related genes and downregulation of DNMT3b. CONCLUSIONS: GO in osteo-induced condition create a favorable microenvironment that promotes the osteogenesis of WJ-MSCs by influencing genetic and epigenetic controls. This helps in advancing our knowledge on the use of GO as priming platform and WJ-MSCs an alternate source for bone repair and regeneration.


Assuntos
Grafite , Células-Tronco Mesenquimais , Geleia de Wharton , Western Blotting , Expressão Gênica
5.
Biotechnol J ; 19(2): e2300381, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403461

RESUMO

Cell therapies based on multipotent mesenchymal stromal cells (MSCs) are traditionally produced using 2D culture systems and platelet lysate- or serum-containing media (SCM). Although cost-effective for single-dose autologous treatments, this approach is not suitable for larger scale manufacturing (e.g., multiple-dose autologous or allogeneic therapies with banked MSCs); automated, scalable and Good Manufacturing Practices (GMP)-compliant platforms are urgently needed. The feasibility of transitioning was evaluated from an established Wharton's jelly MSCs (WJ-MSCs) 2D production strategy to a new one with stirred-tank bioreactors (STRs). Experimental conditions included four GMP-compliant xeno- and serum-free media (XSFM) screened in 2D conditions and two GMP-grade microcarriers assessed in 0.25 L-STRs using SCM. From the screening, a XSFM was selected and compared against SCM using the best-performing microcarrier. It was observed that SCM outperformed the 2D-selected medium in STRs, reinforcing the importance of 2D-to-3D transition studies before translation into clinical production settings. It was also found that attachment efficiency and microcarrier colonization were essential to attain higher fold expansions, and were therefore defined as critical process parameters. Nevertheless, WJ-MSCs were readily expanded in STRs with both media, preserving critical quality attributes in terms of identity, viability and differentiation potency, and yielding up to 1.47 × 109 cells in a real-scale 2.4-L batch.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células , Proliferação de Células , Reatores Biológicos , Células Cultivadas , Diferenciação Celular , Meios de Cultura Livres de Soro , Cordão Umbilical
6.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364284

RESUMO

Burn wounds are the most destructive and complicated type of skin or underlying soft tissue injury that are exacerbated by a prolonged inflammatory response. Several cell-based therapeutic systems through the culturing of potent stem cells on modified scaffolds have been developed to direct the burn healing challenges. In this context, a new regenerative platform based on boron (B) enriched-acellular sheep small intestine submucosa (AOSIS) scaffold was designed and used as a carrier for mesenchymal stem cells derived from Wharton's jelly (WJMSCs) aiming to promote the tissue healing in burn-induced rat models. hWJMSCs have been extracted from human extra-embryonic umbilical cord tissue. Thereafter, 96 third-degree burned Wistar male rats were divided into 4 groups. The animals that did not receive any treatment were considered as group A (control). Then, group B was treated just by AOSIS scaffold, group C was received cell-seeded AOSIS scaffold (hWJMSCs-AOSIS), and group D was covered by boron enriched-cell-AOSIS scaffold (B/hWJMSCs-AOSIS). Inflammatory factors, histopathological parameters, and the expression levels of epitheliogenic and angiogenic proteins were assessed on 5, 14 and 21 d post-wounding. Application of the B/hWJMSCs-AOSIS on full-thickness skin-burned wounds significantly reduced the volume of neutrophils and lymphocytes at day 21 post-burning, whilst the number of fibroblasts and blood vessels enhanced at this time. In addition, molecular and histological analysis of wounds over time further verified that the addition of boron promoted wound healing, with decreased inflammatory factors, stimulated vascularization, accelerated re-epithelialization, and enhanced expression levels of epitheliogenic genes. In addition, the boron incorporation amplified wound closure via increasing collagen deposition and fibroblast volume and activity. Therefore, this newly fabricated hWJMSCs/B-loaded scaffold can be used as a promising system to accelerate burn wound reconstruction through inflammatory regulation and angiogenesis stimulation.


Assuntos
Queimaduras , Células-Tronco Mesenquimais , Lesões dos Tecidos Moles , Geleia de Wharton , Ratos , Masculino , Humanos , Animais , Ovinos , Boro , Cordão Umbilical , Ratos Wistar , Cicatrização , Queimaduras/terapia , Queimaduras/metabolismo , Lesões dos Tecidos Moles/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
7.
Tissue Cell ; 87: 102320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342071

RESUMO

Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Geleia de Wharton , Humanos , AVC Isquêmico/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Tissue Cell ; 87: 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377632

RESUMO

Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Poliésteres , Povidona/análogos & derivados , Geleia de Wharton , Humanos , Peptídeo C , Diferenciação Celular , Células Cultivadas
9.
J Biomed Mater Res B Appl Biomater ; 112(1): e35368, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247251

RESUMO

The effect of Wharton's jelly mesenchymal stem cells conditioned medium (WJMSCs-CM) and zinc oxide nanoparticles (ZnO-NPs) on cultured human gingival fibroblasts on various barrier membranes was investigated in this study. In this study, human gingival fibroblasts were prepared and cultured on three membranes: collagen membrane, acellular dermal matrix (ADM) with ZnO-NPs, and ADM without ZnO-NPs. WJMSCs-CM was given to the testing groups, while control groups received the same membranes without WJMSCs-CM. Following 48 and 72 h, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were performed to assess cell survival. Cell proliferation on the membranes was also evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining after 48 and 72 h. Field emission scanning electron microscopy was used to determine membrane surface structure and cell adhesion. Nanoparticles were also subjected to an energy-dispersive x-ray analysis to identify their chemical structure. Two-way analysis of variance was used to conduct the statistical analysis. The p-value ≤.05 was considered significant. When ADM-ZnO-NPs were combined with CM, fibroblast viability, and adhesion significantly differed from ADM-ZnO-NPs alone. DAPI results confirmed cell proliferation in all six groups on both experiment days. The abundance and concentrated distribution of cells during cell proliferation were found in CM-containing membranes, specifically the ADM-ZnO-NPs membrane, demonstrating the improved biocompatibility of the ADM-ZnO-NPs membrane for cell proliferation. The other groups did not significantly differ from one another. WJMSCs-CM positively affected the viability and proliferation of gingival fibroblasts, but only marginally. Under certain conditions, ZnO-NPs below a specific concentration increased the biocompatibility of the membranes.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Óxido de Zinco , Humanos , Meios de Cultivo Condicionados/farmacologia , Fibroblastos , Proliferação de Células
10.
BMC Endocr Disord ; 24(1): 6, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178017

RESUMO

BACKGROUND: Diabetic nephropathy and hepatopathy are health problems described by specific renal and hepatic structure and function disturbances. The protective effects of the stem cell secretome have been shown in several kidney and liver diseases. The current study aims to evaluate the capability of conditioned media derived from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs-CM) to alleviate diabetic complications. METHODS: Twenty Sprague Dawley rats were made diabetic through injection of STZ (60 mg/kg, i.p.). At week 8, diabetic rats were divided into two groups: treated [DM + hWJ-MSCs-CM (500 µl/rat for three weeks, i.p.)] and not treated (DM). At the 11th week, three groups (control, DM, and DM + hWJ-MSCs-CM) were kept in metabolic cages, and urine was collected for 24 h. The serum samples were maintained for measuring fasting blood glucose (FBG) and kidney and liver functional analysis. The left kidney and liver parts were kept at -80 °C to assess apelin and transforming growth factor-beta (TGF-ß) expression. The right kidney, pancreas, and liver parts were used for histopathologic evaluation. RESULTS: DM was detected by higher FBG, microalbuminuria, increased albumin/creatinine ratio, and pancreas, renal, and hepatic structural disturbances. Diabetic hepatopathy was determined by increasing liver enzymes and decreasing total bilirubin. The TGF-ß gene expression was significantly upregulated in the diabetic kidney and liver tissues. Apelin gene expression was significantly downregulated in the diabetic liver tissue but did not change in kidney tissue. Administration of hWJ-MSCs-CM improved renal and hepatic functional and structural disturbances. Moreover, CM therapy significantly decreased TGF-ß expression and enhanced apelin expression in the kidney and liver tissues. CONCLUSION: Human WJ-MSCs-CM may have protective effects on diabetic renal and hepatic complications. These effects may happen through the regulation of TGF-ß and apelin signaling pathways.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hepatopatias , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Humanos , Masculino , Ratos , Apelina , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Hepatopatias/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Geleia de Wharton/citologia
11.
Sci Rep ; 14(1): 560, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177376

RESUMO

Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Efrinas/metabolismo , Cordão Umbilical , Transdução de Sinais , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Proteína ADAMTS13/metabolismo
12.
Stem Cells Dev ; 33(3-4): 89-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38164089

RESUMO

Mesenchymal stem cells (MSCs) directly differentiate into neurons and endothelial cells after transplantation, and their secretome has considerable potential for treating brain injuries. Previous studies have suggested that the effects of MSCs priming with exposure to hypoxia, cytokines, growth factors, or chemical agents could optimize the paracrine potency and therapeutic potential of MSCs. Studies have suggested that thrombin-primed Wharton's Jelly-derived mesenchymal stem cells (Th.WJ-MSCs) significantly enhance the neuroprotective beneficial effects of naive MSCs in brain injury such as hypoxic-ischemic brain injury (HIE) and intraventricular hemorrhage (IVH). This study aimed to characterize WJ-MSCs in terms of stem cell markers, differentiation, cell proliferation, and paracrine factors by comparing naive and Th.WJ-MSCs. We demonstrated that compared with naive MSCs, Th.MSCs significantly enhanced the neuroprotective effects in vitro. Moreover, we identified differentially expressed proteins in the conditioned media of naive and Th.WJ-MSCs by liquid chromatography-tandem mass spectrometry analysis. Secretome analysis of the conditioned medium of WJ-MSCs revealed that such neuroprotective effects were mediated by paracrine effects with secretomes of Th.WJ-MSCs, and hepatocyte growth factor was identified as a key paracrine mediator. These results can be applied further in the preclinical and clinical development of effective and safe cell therapeutics for brain injuries such as HIE and IVH.


Assuntos
Lesões Encefálicas , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Geleia de Wharton , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Fármacos Neuroprotetores/farmacologia , Trombina/farmacologia , Trombina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Transdução de Sinais , Diferenciação Celular , Fatores Imunológicos/metabolismo , Lesões Encefálicas/metabolismo , Proliferação de Células
13.
Stem Cells Transl Med ; 13(2): 101-106, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950618

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving ß-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve ß-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Diabetes Mellitus Tipo 1/terapia , Qualidade de Vida , Cordão Umbilical , Insulina , Diferenciação Celular , Células Cultivadas , Proliferação de Células/fisiologia
14.
Stem Cells ; 42(1): 76-89, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37931142

RESUMO

Mesenchymal stem cells (MSCs) are widely used in therapy, but the differences between MSCs of various origins and their ability to undergo osteogenic differentiation and produce extracellular matrix are not fully understood. To address this, we conducted a comparative analysis of mesenchymal cell primary cultures from 6 human sources, including osteoblast-like cells from the adult femur, adipose-derived stem cells, Wharton's jelly-derived mesenchymal cells, gingival fibroblasts, dental pulp stem cells, and periodontal ligament stem cells. We analyzed these cells' secretome, proteome, and transcriptome under standard and osteogenic cultivation conditions. Despite the overall similarity in osteogenic differentiation, the cells maintain their embryonic specificity after isolation and differentiation in vitro. Furthermore, we propose classifying mesenchymal cells into 3 groups: dental stem cells of neural crest origin, mesenchymal stem cells, and fetal stem cells. Specifically, fetal stem cells have the most promising secretome for various applications, while mesenchymal stem cells have a specialized secretome optimal for extracellular matrix production. Nevertheless, mesenchymal cells from all sources secreted core bone extracellular matrix-associated proteins. In conclusion, our study illuminates the distinctive characteristics of mesenchymal stem cells from various sources, providing insights into their potential applications in regenerative medicine and enhancing our understanding of the inherent diversity of mesenchymal cells in vivo.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Osteogênese , Diferenciação Celular , Técnicas de Cultura de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo
15.
Int J Biol Macromol ; 255: 127562, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865356

RESUMO

Wharton's Jelly (WJ) has attracted significant interest in the field of tissue healing thanks to its biological properties, including antibacterial activity and immunomodulation. However, due to the fast degradation and poor mechanical behavior in biological environment, its application in bone regeneration is compromised. Here, we proposed to use genipin as an efficient cross-linking agent to significantly improve the elasticity and the enzymatical stability of the WJ matrix. The degree of cross-linking, linear elastic moduli, and collagenase resistance varied over a wide range depending on genipin concentration. Furthermore, our results highlighted that an increase in genipin concentration led to a decreased surface wettability, therefore impairing cell attachment and proliferation. The genipin cross-linking prevented rapid in vitro and in vivo degradation, but led to an adverse host reaction and calcification. When implanted in the parietal bone defect, a limited parietal bone regeneration to the dura was observed. We conclude that genipin-cross-linked WJ is a versatile medical device however, a careful selection is required with regards to the genipin concentration.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Geleia de Wharton/metabolismo , Cicatrização , Diferenciação Celular , Cordão Umbilical , Proliferação de Células
16.
Tissue Eng Regen Med ; 21(1): 171-183, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688747

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a prevalent chronic joint disease caused by various factors. Mesenchymal stem cells (MSCs) therapy is an increasingly promising therapeutic option for osteoarthritis. However, the chronic inflammation of knee joint can severely impede the therapeutic effects of transplanted cells. Gelatin microspheres (GMs) are degradable biomaterial that have various porosities for cell adhesion and cell-cell interaction. Excellent elasticity and deformability of GMs make it an excellent injectable vehicle for cell delivery. METHODS: We created Wharton's jelly derived mesenchymal stem cells (WJMSCs)-GMs complexes and assessed the effects of GMs on cell activity, proliferation and chondrogenesis. Then, WJMSCs loaded in GMs were transplanted in the joint of osteoarthritis mice. After four weeks, joint tissue was collected for histological analysis. Overexpressing-luciferase WJMSCs were performed to explore cell retention in mice. RESULTS: In vitro experiments demonstrated that WJMSCs loaded with GMs maintained cell viability and proliferative potential. Moreover, GMs enhanced the chondrogenesis differentiation of WJMSCs while alleviated cell hypertrophy. In KOA mice model, transplantation of WJMSCs-GMs complexes promoted cartilage regeneration and cartilage matrix formation, contributing to the treatment of KOA. Compared with other groups, in WJMSCs+GMs group, there were fewer cartilage defects and with a more integrated tibia structure. Tracking results of stable-overexpressing luciferase WJMSCs demonstrated that GMs significantly extended the retention time of WJMSCs in knee joint cavity. CONCLUSION: Our results indicated that GMs facilitate WJMSCs mediated knee osteoarthritis healing in mice by promoting cartilage regeneration and prolonging cell retention. It might potentially provide an optimal strategy for the biomaterial-stem cell based therapy for knee osteoarthritis.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite do Joelho , Geleia de Wharton , Camundongos , Animais , Gelatina , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Microesferas , Células-Tronco Mesenquimais/metabolismo , Materiais Biocompatíveis/farmacologia , Cartilagem , Luciferases
17.
Reprod Sci ; 31(1): 190-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697205

RESUMO

Oocyte cytoplasmic maturation is a crucial process during in vitro maturation (IVM), and finding an appropriate IVM medium that promotes oocyte competence is very critical in assisted reproductive technology (ART). The aim of this study was to investigate the effects of umbilical cord Wharton's jelly (WJ-MSCs)-derived conditioned media on the maturation of immature oocytes and their developmental potential in humans after IVM, as well as apoptotic gene expression. A total of 392 germinal vesicle (GV) oocytes were collected from 207 women aged 25-35 years and divided into two IVM groups: (1) control group, which was cultured in CleavTM medium, and (2) experimental group, which was cultured in supernatants of umbilical cord Wharton's jelly as a conditioned medium (CM). First, WJ-MSCs were isolated, and their purity was analyzed. The immunophenotypes of WJ-MSCs were analyzed by flow cytometry. The quantitative expression of BCL2, BAX, and BAG1 in matured oocytes and embryos was evaluated through quantitative real-time polymerase chain reaction (qRT-PCR). Our findings showed that WJ-MSCs have a high proliferating capacity. The purity of the isolated cells was further validated by immunophenotyping, which revealed that their surface antigen expression had phenotypical properties similar to WJ-MSCs. When compared to CD34 and CD45 surface markers, the enlarged cells were positive for CD90, CD105, and CD44. There were significant differences in cytoplasmic maturation of oocytes and embryo quality between the two groups. The mRNA expression levels of BCL-2, BAG1, and BAX in matured oocytes and embryos were also significantly different between the two groups. Therefore, WJ-MSCs medium indicated potential efficacy in terms of ameliorating oocyte maturation and in promoting the development and genes expression of BAX, BCL-2, and BAG1.


Assuntos
Geleia de Wharton , Feminino , Humanos , Geleia de Wharton/metabolismo , Meios de Cultivo Condicionados , Diferenciação Celular , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Cordão Umbilical , Apoptose , Oócitos , Desenvolvimento Embrionário , Células Cultivadas
18.
Cell Tissue Res ; 395(2): 211-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112806

RESUMO

Peripheral artery disease (PAD) affects more than 230 million people worldwide, with approximately 11% of patients presenting with advanced-stage PAD or critical limb ischemia (CLI). To avoid or delay amputation, particularly in no-option CLI patients with infeasible or ineffective revascularization, new treatment strategies such as regenerative therapies should be developed. Mesenchymal stem cells (MSCs) are the most popular cell source in regenerative therapies. They possess significant characteristics such as angiogenic, anti-inflammatory, and immunomodulatory activities, which encourage their application in different diseases. This phase I clinical trial reports the safety, feasibility, and probable efficacy of the intramuscular administration of allogeneic Wharton's jelly-derived MSCs (WJ-MSCs) in type 2 diabetes patients with CLI. Out of six screened patients with CLI, five patients were administered WJ-MSCs into the gastrocnemius, soleus, and the proximal part of the tibialis anterior muscles of the ischemic lower limb. The safety of WJ-MSCs injection was considered a primary outcome. Secondary endpoints included wound healing, the presence of pulse at the disease site, the absence of amputation, and improvement in visual analogue scale (VAS), pain-free walking time, and foot and ankle disability index (FADI). No patient experienced adverse events and foot or even toe amputation during the 6-month follow-up. Six months after the intervention, there were a significantly lower VAS score and significantly higher pain-free walking time and FADI score than the baseline, but no statistically significant difference was seen between other time points. In conclusion, allogeneic WJ-MSC transplantation in patients with CLI seems to be safe and effective.


Assuntos
Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Isquemia Crônica Crítica de Membro , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
19.
Sci Rep ; 13(1): 21214, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040829

RESUMO

Warton's jelly-derived Mesenchymal stem cells (WJ-MSCs) play key roles in improving nerve regeneration in acellular nerve grafts (ANGs); however, the mechanism of WJ-MSCs-related nerve regeneration remains unclear. This study investigated how WJ-MSCs contribute to peripheral nerve regeneration by examining immunomodulatory and paracrine effects, and differentiation potential. To this end, WJ-MSCs were isolated from umbilical cords, and ANGs (control) or WJ-MSCs-loaded ANGs (WJ-MSCs group) were transplanted in injury animal model. Functional recovery was evaluated by ankle angle and tetanic force measurements up to 16 weeks post-surgery. Tissue biopsies at 3, 7, and 14 days post-transplantation were used to analyze macrophage markers and interleukin (IL) levels, paracrine effects, and MSC differentiation potential by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The WJ-MSCs group showed significantly higher ankle angle at 4 weeks and higher isometric tetanic force at 16 weeks, and increased expression of CD206 and IL10 at 7 or 14 days than the control group. Increased levels of neurotrophic and vascular growth factors were observed at 14 days. The WJ-MSCs group showed higher expression levels of S100ß; however, the co-staining of human nuclei was faint. This study demonstrates that WJ-MSCs' immunomodulation and paracrine actions contribute to peripheral nerve regeneration more than their differentiation potential.


Assuntos
Geleia de Wharton , Animais , Humanos , Cordão Umbilical , Diferenciação Celular , Células Cultivadas
20.
Artigo em Inglês | MEDLINE | ID: mdl-38083064

RESUMO

The umbilical cord is a critical structure linking the fetus to the placenta and is surrounded by the amniotic fluid. It is composed of a vein, two arteries coiled around the vein, and Wharton's jelly surrounding the blood vessels. In this study, the stress distribution of the arteries, vein, and Wharton's jelly of an umbilical cord with extra-abdominal umbilical vein varix is analyzed for varying amniotic pressure using finite element analysis. Four diameters are considered for the umbilical vein, 6.5 mm, 11 mm, 15.5 mm, and 20 mm, with 6.5 mm corresponding to the normal vein diameter. The amniotic pressure is varied from 15-105 mmHg in steps of 15 mmHg, to simulate contractions during labour. Stress distribution is obtained and the peak stresses are analyzed. According to the results, the peak stress in the Wharton's jelly and the umbilical vein increases nonlinearly with increasing amniotic pressure. The peak stress in umbilical arteries initially decreases till the amniotic pressure reaches 45 mmHg and thereafter increases. This might be due to asymmetric deformation of the Wharton's jelly at the pressure range below arterial pressure.Clinical Relevance- This study could be useful in understanding the fundamental mechanics of extra-abdominal umbilical vein varix and help in development of better treatment protocols.


Assuntos
Varizes , Geleia de Wharton , Gravidez , Feminino , Humanos , Cordão Umbilical/química , Artérias Umbilicais , Líquido Amniótico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...